REPRESENTATION OF THE PROCESSES INVOLVED IN
THE TEMPERATURE FLUCTUATIONS EXPERIENCED
BY THE WALLS OF BUILDINGS ON THE BASIS OF THE
HEAT ASSIMILATION COEFFICIENT (a/w)!/?

V. V. Nasedkin UDC 536.21

The quantities characterizing the temperature fluctuations taking place in multilayered walls
are expressed in the form of the so-called "heat-assimilation coefficient," An approximate
method of determining the damping of the temperature fluctuations is proposed.

In solving problems of the kind envisaged by operational methods, the amplitude of the temperature fluc-
tuations in the cross section of the wall may be expressed [1] in the form

() = L (NN _)'2 l‘ (1)

where N; and N_; are determined by the conditions of the problem. For a single-layered wall these are equal

to (2] ontions
Mo f;ﬂ‘{i;%ch;l/ii%:rshxl/ii? |
(Ti“l/ii7+a_in‘/ii7)°hﬁl/ii—g+
" [l - “inx;out(l/i "%)2 Jsha l//—i i

We see from Eq. (2) that the same quantity (a/w)l/ 2 enters into the arguments of the hyperbolic functions and
into the coefficients of these functions. Lykov defined this quantity as the "heat-assimilation coefficient" [1]

I

l/_g____g, (3)

According to Eq. (3) the quantity £ is characterized by the thermophysical properties of the material and
the cyclic frequency of the thermal flux fluctuation. By its very nature this quantity constitutes a parameter
of the heat-transfer process associated with harmonic temperature variations. The quantity ¢ has the dimen-
sions of length (m).

We may express the complexes of quantities entering into Eq. (2) in the following way:
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where D, is the relative coordinate, and D is the relative thickness of the layer,

The dimensionless quantities Dg and D are generalized variables, Gukhman showed [3] that any general-
ized variable might be represented in the form of a ratio between two similar quantities. The denominator of
such a ratio has become known as the "characteristic scale.,"

In Egs. (4) and (5) the characteristic scale is ¢,

The quantity S is well known in building thermophysics as the ratio of the thermal-flux amplitude to the
temperature amplitude at the surface of a thick layer:

Im (x) — Ny — |
—————tm ® Vicyw =8S. 7)

This interpretation of S was first given by Vlasov {4]. Following the investigations of Vlasov and Muromov [5],
Shklover developed a method of approximately determining the damping of the temperature fluctuations in the
walls of buildings [6]. In Shklover's equations the damping of the temperature fluctuations is expressed in the
form of a function of the quantities S, Y, and D = SR, Here Y (like S) is the ratio of thermal flux and tempera-
ture amplitudes, but measured at the surface of a thin layer, at which the laws of a semiinfinite solid are brok-
en and this ratio ceases to be a constant quantity.

Using the parameter ¢ as characteristic scale, the physical nature of S and Y may be expressed in another
way.

According to (6), Sis the thermal conductivity of a layer of thickness £. For Ax = ¢ the relative thickness
of the layer equals the dimensionless unit (ADy = 1).

Thus S is the thermal conductivity of a layer having a relative thickness of unity,

We express (5) in the form

o b "o R
D=61/T=TAI/T=SR=—I. ®)

S

If we understand S as the thermal conductivity of a unit dimensionless layer, then according to (8) the
dimensionless thickness D is the ratio of the thermal resistance of a particular layer to the resistance of a
layer of unit thickness.

Equation (8) may be obtained directly from the equation 6§ = AR on rewriting the latter after allowing for
the use of relative coordinates

8 A
— =R,
: £ ®)

and then

" D=SR. (82)

The thermal flux and the boundary condition of the fourth kind are here expressed by the equations

ot A ot ot
X =—38 = — Stg :
3
tg"pn+1 Sn
€%  Saa a

-1571



It follows from Egs. (8a) and (10) that, on passing to relative coordinates, the quantity S, being a propor~-
tionality factor, plays the part of the thermal conductivity A. On thisbasis S may be defined as the cyclical
thermal conductivity (W/m?-K).

We see from (11) that, if we take the parameter ¢ as the unit measured along the horizontal axis, the
ratio between the slopes of the tangents to the temperature curve at the interface between the layers is inverse-
ly proportional to the ratio between the cyclical thermal conductivities,

In order to derive approximate formulas for the damping of the temperature fluctuations in the layer, we
shall assume that Eq. (11) also extends to the temperature amplitude,

From Eq, (11) we find

|

s

g, = —*, (12)
1

tg,, = 2o, (13)

According to (12) and (13) the angles y,, and y, , ; may be obtained if we set off segments equal to the dimen-
sionless unit along the horizontal axis and distances reciprocal to.the cyclical thermal conductivities S and
8, + 1 along the vertical axis (Fig. 1a) [2]. If the layer n is "thin" (D, < 1), then not only the layer n, but also
(to some extent) the layer n — 1, lies within the thickness of the unit section AB (Fig. 1b). The thermal conduc-
tivity of such an inhomogeneous unit section we may call Y,,. Let us express this as the sum of the thermal
conductivities of the sections AL and LB:

Y, =Y, ,(I-Dy)+ S D

n=n*

Analysis shows that Eq. (14) is only valid for Sy/Ypy1 = 1. If Sn/Yp-y < 1, then

1 1 1
—=(1—=D +D, —.
Y. ( ) v T (15)

Since (1-Dp)(1/Yp-1) = Ra1, and Dp(1/Sn) = Ry = R1,B, Eq. (15) reduces to the form
(Ra. + Rip)Y, = 1. (16)

This latter form has the sense of Eq, (8a) in which D=1, For D, = 1,Yy= 8y [6].

Thus, if of two continuous layers n and n + 1 layer n is thin (D, < 1), Eq. (11) will take the following form
for purposes of approximate calculations

tgwnn —_ _Yr}_‘ (17)
tg \pn Sn+1
According to [2] the damping of the temperature fluctuations over the thickness of the layer may be ap-
proximately represented in the following way: At the inner surface of the layer, within a region of relative
thickness unity, the change in amplitude takes place linearly; subsequently it proceeds exponentially right up
to the outer surface, as in a semiinfinite solid (Fig. 2a), If the relative thickness of the layer is less than
unity, the change of amplitude is approximated by a straight line throughout the whole thickness.

Let us consider the damping of the temperature fluctuations in a "thin" layer. In accordance with Eq. (12)
we set off a segment AB equal to unity, proceeding from the inner surface of the layer along the horizontal axis
(Fig. 2b). The damping of the temperature fluctuations in layer n is expressed by the equation

v, = WM EMC - 8 p o, 18)
BP g%,y
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Fig. 1, Diagram illustrating the meaning of Eqgs. (11), (12}, (13) (a) and Eq. 17
(b).
Fig. 2. Damping of temperature fluctuations for 'Dy > 1 (a) and Dy = 1 (b).

Allowing for (17), we finally obtain

19)

In a layer of considerable thickness (D, > 1; Fig. 2a) the damping of the temperature fluctuations is
expressed by the equation

¥V, == VBCVCF- (20)

We find the damping of the fluctuations in unit section BC from Eq, (19):

Yn—l + Sn

Vpn = 21)
BC Sn ( )
We determine the damping of the fluctuations beyond the unit section as in a semiinfinite solid:
D, —1 D
Ver = ex = = 0b5exp | —2|. 22
or=e( 375 *(75) 2)

As a result of this, the damping of the temperature fluctuations in layer n of a multilayered wall will be
given by the following equations:

for Dy > 1

D You+S
=05 n_\- - n=1 " out
,v" ' exP( Ve )[ S, ] @3)

for Dy = 1 — by Eq. (19).
For the first layer, according to [6, 7] Y,_; = Y, = op, and hence for D; > 1

v1:0:5exp( %) [ @ :g{—Sl J’ (24
1
for D, =1
vy = oD +S 5)
S, | 5
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The damping of the temperature fluctuations on passing from the outer air to the inner surface of the
wall is obtained from Eq. (19) if we take Sp = qpyt and Dy = Dyt = 1 [7]:

= dout+ Y

% sut

Vour (26)

The quantity Yn in (19) and (23)-(26) is the thermal conductivity of an inhomogeneous unit layer. This
quantity is determined by the expressions;

for layer n

Yi'=viL(a—D,) +SE'D,, ~ (27)
for the first layer

Y =o' (1 —Dy) + ST'Di. (28)

In (27) and (28) the power indices are positive for Sp/Yp_¢ = 1, S;/ajp = 1 and negative if these ratios are
smaller than unity, For Dp > 1

Y, =S, (29)

Equations (23), (24), (26), and (29) are the same as in the method of Shklover, The error of the approxi-
mation in the method described in this paper is also the same as that of the Shklover calculation (+ 15%).
NOTATION

a, thermal diffusivity; A, thermal conductivity; c, specific heat; v, bulk mass of the material; w, cyclical
frequency of the fluctuations; x, coordinate; 6, thickness of layer; R, thermal resistance; tm» amplitude of the
temperature fluctuation in the outer air; tm(x), am (%), amplitudes of the temperature and thermal flux fluctua-
tions in section x; ®out, @in, heat-transfer coefficients of the outer and inner surfaces of the wall,
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